Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(15): 25418-25432, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445980

RESUMO

Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with a high metastatic potential. The majority of MCC cases are caused by the Merkel cell polyomavirus (MCPyV), through expression of the virus-encoded tumour antigens. Whilst mechanisms attributing tumour antigen expression to transformation are being uncovered, little is known of the mechanisms by which MCPyV persists in the host. We previously identified the MCPyV small T antigen (tAg) as a novel inhibitor of nuclear factor kappa B (NF-kB) signalling and a modulator of the host anti-viral response. Here we demonstrate that regulation of NF-kB activation involves a previously undocumented interaction between tAg and regulatory sub-unit 1 of protein phosphatase 4 (PP4R1). Formation of a complex with PP4R1 and PP4c is required to bridge MCPyV tAg to the NEMO adaptor protein, allowing deactivation of the NF-kB pathway. Mutations in MCPyV tAg that fail to interact with components of this complex, or siRNA depletion of PP4R1, prevents tAg-mediated inhibition of NF-kB and pro-inflammatory cytokine production. Comparison of tAg binding partners from other human polyomavirus demonstrates that interactions with NEMO and PP4R1 are unique to MCPyV. Collectively, these data identify PP4R1 as a novel target for virus subversion of the host anti-viral response.


Assuntos
Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/virologia , Poliomavírus das Células de Merkel/imunologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/imunologia , Carcinoma de Célula de Merkel/patologia , Linhagem Celular Tumoral , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Mutação , Fosfoproteínas Fosfatases/genética , Transfecção
2.
J Virol ; 89(1): 35-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320307

RESUMO

UNLABELLED: Merkel cell carcinoma (MCC) is an aggressive skin cancer of neuroendocrine origin with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) causes the majority of MCC cases due to the expression of the MCPyV small and large tumor antigens (ST and LT, respectively). Although a number of molecular mechanisms have been attributed to MCPyV tumor antigen-mediated cellular transformation or replication, to date, no studies have investigated any potential link between MCPyV T antigen expression and the highly metastatic nature of MCC. Here we use a quantitative proteomic approach to show that MCPyV ST promotes differential expression of cellular proteins implicated in microtubule-associated cytoskeletal organization and dynamics. Intriguingly, we demonstrate that MCPyV ST expression promotes microtubule destabilization, leading to a motile and migratory phenotype. We further highlight the essential role of the microtubule-associated protein stathmin in MCPyV ST-mediated microtubule destabilization and cell motility and implicate the cellular phosphatase catalytic subunit protein phosphatase 4C (PP4C) in the regulation of this process. These findings suggest a possible molecular mechanism for the highly metastatic phenotype associated with MCC. IMPORTANCE: Merkel cell polyomavirus (MCPyV) causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer with a high metastatic potential. However, the molecular mechanisms leading to virally induced cancer development have yet to be fully elucidated. In particular, no studies have investigated any potential link between the virus and the highly metastatic nature of MCC. We demonstrate that the MCPyV small tumor antigen (ST) promotes the destabilization of the host cell microtubule network, which leads to a more motile and migratory cell phenotype. We further show that MCPyV ST induces this process by regulating the phosphorylation status of the cellular microtubule-associated protein stathmin by its known association with the cellular phosphatase catalytic subunit PP4C. These findings highlight stathmin as a possible biomarker of MCC and as a target for novel antitumoral therapies.


Assuntos
Antígenos Virais de Tumores/metabolismo , Movimento Celular , Interações Hospedeiro-Patógeno , Poliomavírus das Células de Merkel/fisiologia , Microtúbulos/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Fosfoproteínas Fosfatases/metabolismo , Proteoma/análise , Estatmina/metabolismo
3.
Cancers (Basel) ; 6(3): 1267-97, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24978434

RESUMO

A fifth of worldwide cancer cases have an infectious origin, with viral infection being the foremost. One such cancer is Merkel cell carcinoma (MCC), a rare but aggressive skin malignancy. In 2008, Merkel cell polyomavirus (MCPyV) was discovered as the causative agent of MCC. It is found clonally integrated into the majority of MCC tumours, which require MCPyV oncoproteins to survive. Since its discovery, research has begun to reveal the molecular virology of MCPyV, as well as how it induces tumourigenesis. It is thought to be a common skin commensal, found at low levels in healthy individuals. Upon loss of immunosurveillance, MCPyV reactivates, and a heavy viral load is associated with MCC pathogenesis. Although MCPyV is in many ways similar to classical oncogenic polyomaviruses, such as SV40, subtle differences are beginning to emerge. These unique features highlight the singular position MCPyV has as the only human oncogenic polyomavirus, and open up new avenues for therapies against MCC.

4.
J Virol ; 87(24): 13853-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109239

RESUMO

Merkel cell carcinoma (MCC) is a highly aggressive nonmelanoma skin cancer arising from epidermal mechanoreceptor Merkel cells. In 2008, a novel human polyomavirus, Merkel cell polyomavirus (MCPyV), was identified and is strongly implicated in MCC pathogenesis. Currently, little is known regarding the virus-host cell interactions which support virus replication and virus-induced mechanisms in cellular transformation and metastasis. Here we identify a new function of MCPyV small T antigen (ST) as an inhibitor of NF-κB-mediated transcription. This effect is due to an interaction between MCPyV ST and the NF-κB essential modulator (NEMO) adaptor protein. MCPyV ST expression inhibits IκB kinase α (IKKα)/IKKß-mediated IκB phosphorylation, which limits translocation of the NF-κB heterodimer to the nucleus. Regulation of this process involves a previously undescribed interaction between MCPyV ST and the cellular phosphatase subunits, protein phosphatase 4C (PP4C) and/or protein phosphatase 2A (PP2A) Aß, but not PP2A Aα. Together, these results highlight a novel function of MCPyV ST to subvert the innate immune response, allowing establishment of early or persistent infection within the host cell.


Assuntos
Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/metabolismo , Quinase I-kappa B/metabolismo , Poliomavírus das Células de Merkel/metabolismo , Infecções por Polyomavirus/metabolismo , Infecções Tumorais por Vírus/metabolismo , Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/imunologia , Carcinoma de Célula de Merkel/virologia , Linhagem Celular , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Imunidade Inata , Poliomavírus das Células de Merkel/genética , NF-kappa B/genética , NF-kappa B/imunologia , Fosforilação , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/virologia , Ligação Proteica , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...